Algebraic Neural Networks: Stability to Deformations
نویسندگان
چکیده
We study algebraic neural networks (AlgNNs) with commutative algebras which unify diverse architectures such as Euclidean convolutional networks, graph and group under the umbrella of signal processing. An AlgNN is a stacked layered information processing structure where each layer conformed by an algebra, vector space homomorphism between algebra endomorphisms space. Signals are modeled elements processed filters that defined images action homomorphism. analyze stability AlgNNs to deformations derive conditions on lead Lipschitz stable operators. conclude have frequency responses -- eigenvalue domain representations whose derivative inversely proportional magnitudes. It follows for given level discriminability, more than filters, thereby explaining their better empirical performance. This same phenomenon has been proven networks. Our analysis shows this deep property shared number architectures.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Algebraic and Hamiltonian Approaches to Isostokes Deformations
We study a generalization of the isomonodromic deformation to the case of connections with irregular singularities. We call this generalization Isostokes Deformation. A new deformation parameter arises: one can deform the formal normal forms of connections at irregular points. We study this part of the deformation, giving an algebraic description. Then we show how to use loop groups and hyperco...
متن کاملUsing neural networks to predict road roughness
When a vehicle travels on a road, different parts of vehicle vibrate because of road roughness. This paper proposes a method to predict road roughness based on vertical acceleration using neural networks. To this end, first, the suspension system and road roughness are expressed mathematically. Then, the suspension system model will identified using neural networks. The results of this step sho...
متن کاملAlgebraic Deformations of Polarized Varieties
Introduction. Let F b e a projectively embeddable complete non-singular variety of dimension n > 1 . Let f be a projective embedding of 7, U a nonsingular variety, W a non-singular variety and φ a morphism of W onto U such that φ^iuo) = f{V) for some point u0 of U. Denote by ΣffO the set of all those complete non-singular fibres φ~(u), u e ί/, as we consider all possible (f, U, W). Suppose that...
متن کاملAlgebraic and Geometric Isomonodromic Deformations
Using the Gauss-Manin connection (Picard-Fuchs differential equation) and a result of Malgrange, a special class of algebraic solutions to isomonodromic deformation equations, the geometric isomonodromic deformations, is defined from “families of families” of algebraic varieties. Geometric isomonodromic deformations arise naturally from combinatorial strata in the moduli spaces of elliptic surf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2021
ISSN: ['1053-587X', '1941-0476']
DOI: https://doi.org/10.1109/tsp.2021.3084537